{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## Error Handling / Exceptions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In Python errors are managed with a special language construct called \"Exceptions\". When errors occur exceptions can be raised, which interrupts the normal program flow and fallback to somewhere else in the code where the closest try-except statement is defined."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Handling bad user input\n",
"\n",
"The following code crashes when the user does not input a number:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With ``try except`` the code can gracefully handle the problem and prompt the user again.\n",
"\n",
"The syntax for these statements is:\n",
"\n",
"```python\n",
"try:\n",
" # normal code goes here\n",
"except:\n",
" # code for error handling goes here\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Functional programming\n",
"\n",
"There are two ways of doing programming: Imperative and functional.\n",
"\n",
"Imperative means that you have a code-flow where you write conditions, loops and invoke functions. This is what we did by now. Many operations, especially in context of mathematics, are nicer to implement when using a functional approach.\n",
"\n",
"In functional programming you transform the input instead with suitable operations and continue with the out. It is like writing a pipeline.\n",
"\n",
"Python is a multi-paradigm language, this means you can use both approaches in Python.\n",
"\n",
"Today we will focus on functional programming. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Imperative: Operations on lists using ``for`` loops (Revision)\n",
"\n",
"Typical operations on lists are:\n",
"\n",
"* Transforming list elements\n",
"* Filtering list elements\n",
"\n",
"This is possible, for example, with a ``for`` loop. However, using a ``for`` loop for this is not typical in Python. We will look at how to do it in a better way later."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example (Function ``count_num``)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def count_num(lst, num):\n",
" \"\"\"\n",
" Counts how often num is in lst\n",
" \"\"\"\n",
" count = 0\n",
" for x in lst:\n",
" if x == num:\n",
" # Equal to count = count + 1\n",
" count += 1\n",
" # count++ unavailable in Python\n",
" return count\n",
"\n",
"count_num([1, 1, 3, 2], 1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"[1, 1, 3, 2].count(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example (Function ``count_even``)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def is_even(x):\n",
" return x % 2 == 0\n",
"\n",
"def count_even(lst):\n",
" \"\"\"\n",
" Counts how many elements are even\n",
" \"\"\"\n",
" count = 0\n",
" for x in lst:\n",
" if is_even(x):\n",
" count += 1\n",
" return count\n",
"\n",
"count_even([2, 3, 4, 5])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example (Function ``inc_one``)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def inc_one(lst):\n",
" \"\"\"\n",
" Increments all list element by 1\n",
" \"\"\"\n",
" for i in range(len(lst)):\n",
" lst[i] += 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Function calling:\n",
"- \"Primitive\" types are passed by value (copied). numbers and strings\n",
"- Objects are passed by reference (list, Fraction, Decimal)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ll = [1, 5, 10]\n",
"\n",
"inc_one(ll)\n",
"\n",
"print(ll)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Functional programming"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Lambda functions\n",
"\n",
"Lambda functions are \"anonymous functions\", i.e. functions without a function name. The term lambda has historical reasons: Lambda functions were first used in computer science in the so-called lambda calculus.\n",
"\n",
"In Python, ``lambda`` corresponds to a function that can contain one statement and the return is implicit."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Example (Function ``add``)\n",
"\n",
"The function ``add`` accepts two arguments and returns there sum.\n",
"\n",
"Shown are a function and a lambda function. Both are equivalent."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Though this is not really useful. They really shine when using them with functions such as ``map``, ``filter`` and ``reduce``."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transforming lists in a pythonic way\n",
"\n",
"The common ways to operate on lists in Python are:\n",
"\n",
"* List Comprehensions\n",
"* Function ``map``\n",
"* Function ``filter``\n",
"\n",
"List Comprehensions are directly evaluated. No call to ``list`` is necessary.\n",
"\n",
"``map`` and ``filter`` however return a generator which can only be used in a loop (or evaluation into a list with ``list()``)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Comprehensions and ``map``\n",
"\n",
"``map`` accepts two arguments:\n",
"\n",
"* A (lambda) function which accepts one parameter: The particular list element is passed here.\n",
"* The list (and of course generators etc.).\n",
"\n",
"The function returns the new list."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lst = [\"Hello\", \"Python\", \"World\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Equivalent to this are List Comprehensions. The inventor of Python finds this the correct way to work with lists.\n",
"\n",
"It was planned to remove the ``map`` function (and also ``filter``) from Python but there was too much protest from other developers.\n",
"\n",
"The syntax is:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[ Output expression for item in list ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Filtering lists with comprehensions and ``filter``\n",
"\n",
"``filter`` accepts two arguments:\n",
"\n",
"* A (lambda) function which accepts one parameter: The respective list element is passed here.\n",
"* The list (and of course generators etc.).\n",
"\n",
"If the lambda function returns a truth value (``True``), the element is part of the new list, otherwise it is removed.\n",
"\n",
"But first how to filter lists with ``for`` and ``if``. This is rather cumbersome (imperative approach):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def is_even(x):\n",
" return x % 2 == 0\n",
"\n",
"nums = range(10)\n",
"even_nums = []\n",
"\n",
"for x in nums:\n",
" if is_even(x):\n",
" even_nums.append(x)\n",
"\n",
"nums = even_nums\n",
"print(nums)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Much more elegant is the ``filter``:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"numbers = range(10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Or the pythonic way: An ``if`` statement in a list comprehension."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[ Output expression for item in list if condition ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"numbers = range(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Bonus: The filtering comprehension can be transformed directly. This is not possible with ``filter`` directly. A call to ``map`` is required afterwards."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### More useful built-in functions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ``any`` and ``all``\n",
"\n",
"These two functions are only useful in combination with a comprehensions that yields bools (``True`` and ``False``)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"``any`` returns true when _any_ element in an iterable is true."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"numbers = range(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"``all`` returns true when _any_ element in an iterable is true."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"numbers = range(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### ``max`` and ``min``\n",
"\n",
"These two functions return the largest or the smallest element in an iterable (an iterable is something that is usable in a for-loop)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"min([1, 4, 3, -10, 0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"max([1, 4, 3, -10, 0])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The function ``zip``\n",
"\n",
"``zip(list1, list2, ..., list_n)`` returns a new _generator_ consisting of the 1st element of each list, then the 2nd element of each list, and so on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"numbers = [1, 2, 3]\n",
"letters = [\"a\", \"b\", \"c\"]\n",
"text = [\"The\", \"function\", \"zip\"]\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can use it to do vector operations."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = [1, 2, 3]\n",
"b = [4, 5, 6]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The function ``functools.reduce``\n",
"\n",
"``reduce`` reduces the values in a list to a single value by consecutively applying the same operator to all values.\n",
"\n",
"$$((((x_1 \\circ x_2) \\circ x_3) \\circ x_4) \\ldots ) $$\n",
"\n",
"Imperative:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lst = [1, 2, 3, 4, 5]\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Functional:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lst = [1, 2, 3, 4, 5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the case of addition this is equal to sum."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Dot product\n",
"\n",
"By combining ``zip`` and ``sum`` you can e.g. calculate the _dot product_ of two vectors."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$$ \\vec{a} \\circ \\vec{b} = \\begin{pmatrix} a_1 \\\\ a_2 \\\\ a_3 \\end{pmatrix} \\circ \\begin{pmatrix} b_1 \\\\ b_2 \\\\ b_3 \\end{pmatrix} = a_1 \\cdot b_1 + a_2 \\cdot b_2 + a_3 \\cdot b_3 $$"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = [4, 5, -3]\n",
"b = [-2, 2, -2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Imperative:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Functional:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Itertools\n",
"\n",
"The module ``itertools`` has many useful functions when you want to operate on iterators.\n",
"\n",
"https://docs.python.org/3/library/itertools.html\n",
"\n",
"For illustrative purposes I will use the functions ``accumulate``, ``product`` and ``permutations``.\n",
"\n",
"``accumulate`` is like ``reduce`` but it also returns the intermediate values."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from itertools import accumulate\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"``product`` calculates the cartesian product.\n",
"\n",
"$$A \\times B:= \\left\\{ (a, b) \\mid a \\in A, b \\in B \\right\\}$$"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from itertools import product\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"``permutations`` returns all permutations (without repetition)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from itertools import permutations\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}