{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Introduction to Python programming (Part 2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Based on \"Introduction to Python programming\" by J.R. Johansson (CC-BY).\n",
"\n",
"Original available at [http://github.com/jrjohansson/scientific-python-lectures](http://github.com/jrjohansson/scientific-python-lectures)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Modules"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Most of the functionality in Python is provided by _modules_. The Python standard library is a large collection of modules that provide many functions such as file input/output, character processing and network communication."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To use a module in Python, it must first be imported. A module can be imported with the `import` instruction. For example, to import the module `math` (contains many standard mathematical functions):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This imports the entire module:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternative: Import all symbols into the global namespace (not recommended)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, this quickly becomes a mess if you import many modules and then different functions may overwrite each other. Therefore, importing with `import math` is recommended.\n",
"\n",
"Alternatively, only individual symbols can be imported:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Inspecting modules"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `dir`-function lists all fields of a module."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"print(dir(math))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"With the function `help` you can get a description of (almost) any function."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"help(math.sqrt)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Other useful modules are `os`, `sys` und `re`. See http://docs.python.org/3/library/ for the documentation."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Math related modules"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Problem: Floating point is not exact because certain numbers cannot be represented using a finite sum of powers of 2."
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.30000000000000004"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"0.1 + 0.2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Decimal\n",
"\n",
"If you need decimal digits with high accuracy use the ``Decimal`` type from the ``decimal`` module."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from decimal import Decimal"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fractions\n",
"\n",
"If you want to work with accurate integer fractions, e.g. when working with proportions or probabilities, use the ``Fraction`` type from the ``fractions`` module."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from fractions import Fraction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Complex numbers\n",
"\n",
"The literal for complex numbers is ``j``, not ``i``."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"z = 2 + 1j"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Complex math is available in the ``cmath`` module."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import cmath"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Algorithms\n",
"\n",
"### Definition (according to Wikipedia)\n",
"\n",
"- Describes a general rule for solving a problem or a class of problems\n",
"- Consists of a finite number of well-defined individual steps\n",
"- Can be implemented in a computer program\n",
"- A certain input results in a certain output\n",
"\n",
"### Definition (visual)\n",
"\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Functions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A function in Python is defined using the keyword `def`, followed by a function name, a signature within parentheses `()`, and a colon `:`. The following code, with one additional level of indentation, is the function body."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Optionally, but highly recommended, you can define a so called \"docstring\", which is a description of the functions purpose and behaivor. The docstring should follow directly after the function definition, before the code in the function body."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Functions that returns a value use the `return` keyword:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can return multiple values from a function using tuples:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example: Fibonacci Sequence\n",
"\n",
"The Fibonacci sequence starts with ``[1, 1]`` and the next number is always the sum of the last element and its predecessor.\n",
"\n",
"One step later the list is ``[1, 1, 2]``, then ``[1, 1, 2, 3]``, etc."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## ``while``-Loop"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A ``while`` loop is executed until the loop condition is false."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This program checks in a loop whether the numbers are even or odd:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Euclidian Algorithm\n",
"\n",
"Calculates the greatest common divisor (gcd).\n",
"\n",
"This works by substracting the smaller from the larger number until the result is 0."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Operations on lists using ``for`` loops\n",
"\n",
"Typical operations on lists are:\n",
"\n",
"* Transforming list elements\n",
"* Filtering list elements\n",
"\n",
"This is possible, for example, with a ``for`` loop. However, using a ``for`` loop for this is not typical in Python. We will look at how to do it in a better way later."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example (Function ``count_num``)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example (Function ``count_even``)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example (Function ``inc_one``)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example (Function ``count_num``)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Lambda functions\n",
"\n",
"Lambda functions are \"anonymous functions\", i.e. functions without a function name. The term lambda has historical reasons: Lambda functions were first used in computer science in the so-called lambda calculus.\n",
"\n",
"In Python, ``lambda`` corresponds to a function that can contain one statement and the return is implicit."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Example (Function ``add``)\n",
"\n",
"The function ``add`` accepts two arguments and returns there sum.\n",
"\n",
"Shown are a function and a lambda function. Both are equivalent."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Transforming lists in a pythonic way\n",
"\n",
"The common ways to operate on lists in Python are:\n",
"\n",
"* List Comprehensions\n",
"* Function ``map``\n",
"* Function ``filter``\n",
"\n",
"List Comprehensions are directly evaluated. No call to ``list`` is necessary.\n",
"\n",
"``map`` and ``filter`` however return a generator which can only be used in a loop (or evaluation into a list with ``list()``)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Comprehensions and ``map``\n",
"\n",
"``map`` accepts two arguments:\n",
"\n",
"* A (lambda) function which accepts one parameter: The particular list element is passed here.\n",
"* The list (and of course generators etc.).\n",
"\n",
"The function returns the new list."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Equivalent to this are List Comprehensions. The inventor of Python finds this the correct way to work with lists.\n",
"\n",
"It was planned to remove the ``map`` function (and also ``filter``) from Python but there was too much protest from other developers.\n",
"\n",
"The syntax is:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[ Output expression for item in list ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Filtering lists with comprehensions and ``filter``\n",
"\n",
"``filter`` accepts two arguments:\n",
"\n",
"* A (lambda) function which accepts one parameter: The respective list element is passed here.\n",
"* The list (and of course generators etc.).\n",
"\n",
"If the lambda function returns a truth value (``True``), the element is part of the new list, otherwise it is removed.\n",
"\n",
"But first how to filter lists with ``for`` and ``if``. This is rather cumbersome:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Much more elegant is the ``filter``:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Or the pythonic way: An ``if`` statement in a list comprehension."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[ Output expression for item in list if condition ]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Bonus: The filtering comprehension can be transformed directly. This is not possible with ``filter`` directly. A call to ``map`` is required afterwards."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The function ``zip``\n",
"\n",
"``zip(liste1, liste2, ..., listen)`` returns a new _generator_ consisting of the 1st element of each list, then the 2nd element of each list, and so on."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}