
Defeating Plausible Deniability of VeraCrypt
Hidden Operating Systems

Michal Kedziora1(B), Yang-Wai Chow2, and Willy Susilo2

1 Faculty of Computer Science and Management,
Wroclaw University of Science and Technology, Wroclaw, Poland

michal.kedziora@pwr.edu.pl
2 School of Computing and Information Technology,

Institute of Cybersecurity and Cryptology, University of Wollongong,
Wollongong, Australia

{caseyc,wsusilo}@uow.edu.au

Abstract. This paper analyzes the security of VeraCrypt hidden oper-
ating systems. We present attacks on the plausible deniability attribute of
hidden Operating Systems (OSs) created using VeraCrypt. We demon-
strate that the encrypted outer volume can contain information that
compromises the existence of a hidden OS, and the fact that it was
running, even if only one copy of the encrypted drive is examined. To
further investigate this, we show that cross drive analysis, previously
used to analyze deniable file systems, can also be applied to prove the
presence of a hidden OS volume and to estimate its size. In addition, we
discuss other attack vectors that can be exploited in relation to cloud
and network information leaks. This paper also examines the security
requirements of a threat model in which the attacker has direct access
to a running hidden OS.

Keywords: Deniable file system · Hidden operation system · Plausible
deniability · TrueCrypt · VeraCrypt

1 Introduction

A hidden Operating System (OS) is an operating system installed in an
encrypted hidden volume, using software such as VeraCrypt. The assumption
is that it should be impossible to prove that a hidden volume exists, and there-
fore impossible to prove that a hidden operating system exists. This concept
is known as plausible deniability, as the existence of the hidden volume cannot
be proven. This feature was implemented in TrueCrypt/VeraCrypt software as
an extension of Deniable File Systems (DFSs) [10], and is based on deniable
encryption which was introduced by Canetti [2,11].

One notion of deniable encryption is the ability to decrypt a ciphertext into
two different plaintexts depending on the key that is provided. An additional
property is to ensure that the adversary cannot detect that a hidden message is
present in the ciphertext. The purpose of this is to protect against adversaries
c© Springer Nature Singapore Pte Ltd. 2017
L. Batten et al. (Eds.): ATIS 2017, CCIS 719, pp. 3–13, 2017.
DOI: 10.1007/978-981-10-5421-1 1



4 M. Kedziora et al.

who are able to force the user to provide a password to decrypt the content,
as the password that is provided will only reveal the decoy message/data while
keeping the true message/data hidden.

Plausible deniability is implemented in TrueCrypt/VeraCrypt via its ability
to create hidden volumes and hidden operating systems. VeraCrypt was devel-
oped based on the original TrueCrypt project. VeraCrypt uses XTS mode for
encrypting partitions, drives and virtual volumes [11]. This mode of operation
is described by Eq. 1; where ⊗ denotes multiplication of two polynomials over
the binary field GF(2) modulo x128 + x7 + x2 + 1; K1 is the encryption key; K2
is the secondary encryption key; i is the cipher block index within a data unit;
n is the data unit index within the scope of K1; and a is the primitive element
of Galois Field (2128) that corresponds to polynomial x [11]. This implies that
a change in one bit of the plaintext will result in a change to the entire 8-bytes
(128 bits) data block of the encrypted volume.

Ci = EK1(Piˆ(EK2(n) ⊗ ai))ˆ(EK2(n) ⊗ ai) (1)

The VeraCrypt documentation provides a guide on how to encrypt a hid-
den OS [11]. A practical implementation consists of two partitions and a boot
loader residing in the first track of a system drive (or a VeraCrypt RescueDisk).
However, this is not a smart solution as the unencrypted boot loader will indi-
cate that the drive is encrypted by VeraCrypt. To overcome this issue there
is an option to create a VeraCrypt rescue disk containing the boot loader, as
depicted in Fig. 1. This will provide plausible deniability as a decoy OS can be
created. Obviously, the system installed on the first partition must not contain
any sensitive files.

Fig. 1. Layout of a drive containing a hidden operating system.

The second partition is also encrypted and can be mounted by the user upon
supplying the second password. The outer volume contains an integrated hidden
volume within which the hidden OS is installed. Existence of the hidden volume,
which is a DFS, cannot be proven via One-Time Access methods (described in
Sect. 2). To access the hidden OS, the user must provide the valid password that
is different from the decoy OS volume’s password. The boot loader will first try to
decrypt the decoy OS’s header, and after it is unsuccessful, it will then attempt
to decrypt the hidden OS’s header. What is important is that when running, the



Defeating Plausible Deniability of Hidden Operating Systems 5

hidden OS will appear to be installed on the same partition as the decoy OS. All
read/write operations will be transparently redirected from the system partition
to the hidden volume inside the outer volume. The VeraCrypt documentation
asserts that neither the OS nor any application programs will know that all data
is essentially written to and read from the hidden volume [11]. In this paper, we
demonstrate that the above statement is not entirely true, as the presence of the
hidden OS can in fact be revealed.

Our Contribution. In this paper, we analyze the security of VeraCrypt hidden
OSs. While this software allow for plausible deniability via the creation of hidden
OSs, we demonstrate that the encrypted outer volume can contain information
that compromises the existence of a hidden OS. Our results are presented from
the point of view of a new threat model incorporating One-Time Access, Multi-
ple Access and Live Response Access scenarios. This paper presents experiment
results showing that the VeraCrypt hidden OS implementation has faults that
can be exploited to compromise the hidden OS even if an attacker only pos-
sess one binary copy of the drive. In addition, we show that it is vulnerable to
cross drive analysis, which can be used to estimate the size of the hidden OS.
Furthermore, this paper discusses other types of attacks that can be conducted
to reveal the existence of a hidden OS on a device based on the Live Response
Access scenario.

2 Threat Model

This work is based on our previously improved threat model for the secu-
rity analysis of Deniable File Systems (DFSs) and hidden Operating Systems
(OSs) [9]. This new model is an improvement on the model proposed by Czeskis
et al. [3], as it addresses the flaws and inconsistencies in the previous model.
The improved threat model is depicted in Fig. 2, in which the attack vectors are
defined by One-Time Access, Multiple Access and Live Response Access scenar-
ios. Compare with the previous model, this new model is much more practical
and suitable for assessing the security of hidden OSs.

The One-Time Access scenario is a situation where an investigator has man-
aged to obtain one or more copies of a device containing only a single copy of the
drive containing a hidden OS [3]. Attack vectors based on this model have been
presented in related work [4,6,7]. However, most of these findings are based on
detecting DFSs, but cannot be applied to detecting hidden OSs. This is because
in the case of hidden OSs, the entire drive is encrypted, thus, reducing the
potential sources of information leaks that can compromise the hidden volume.

In a Multiple Access scenario, an investigator has access to multiple device
images containing multiple hidden encrypted containers. The main threat to
DFSs in this scenario lies in possibility of differential analysis for detecting hidden
volumes, as this results in the ability to attack the plausible deniability attribute.
This issue was raised in Czeskis et al. [3], where they highlighted that if disk
snapshots could be obtained at close enough intervals, then the existence of any



6 M. Kedziora et al.

Fig. 2. Threat model and attack vectors on deniable file systems and hidden operating
systems.

deniable files would become obvious. This is due to the fact that examination
using differential analysis can reveal that seemingly random bytes on the hard
drive will change in a non-random fashion. This was practically demonstrated
by Hargreaves and Chivers [6], and research on detecting the creation of DFSs
inside an encrypted container have been presented in Jozwiak [8].

The Live Response Access model is the model that is most suitable for detect-
ing a hidden OS. Examples of such a scenario is when an investigator has direct
live access to a DFS based hidden OS, or has access to the network environ-
ment within which a hidden OS is operating, or has access to cloud applications
in which a hidden OS is connected to. A typically situation will involve an
investigator remotely logging into a system containing a hidden OS using live
response tools or just using standard remote access software like Team Viewer
or VNC. Live response and memory analysis tools have the capabilities of col-
lecting information from network connections, open ports and sockets, running
processes, terminated processes, loaded DLLs, open files, OS kernel modules,
process dumps, strings or user logs [12].

3 Defeating Deniability of Hidden Operating Systems

In this section, we present practical attacks on the deniability of hidden Operat-
ing Systems (OSs). For this, a test environment was created using Oracle Virtual
Box version 5.1.12. A hard drive image size of 50GB was created. However, since
the virtual box operates using the vdi file format with included metadata, its
image had to be converted to a binary RAW format before analysis using com-
puter forensic tools. Both the decoy and hidden OS (MS Windows 10) where
installed using VeraCrypt 1.19. The designed layout of partitions is depicted in
Table 1.



Defeating Plausible Deniability of Hidden Operating Systems 7

Table 1. Layout of the test environment.

Partition Starting sector Last sector Size (MB)

/dev/sda1 2048 1026047 500

/dev/sda2 1026047 43530239 20270

/dev/sda3 43532225 104855551 29240

/dev/sda5 43532288 1048553551 29240

Unallocated 104855552 104857599 1

The first partition, /dev/sda1, was for the Windows Recovery Environment
(WinRE) and was unencrypted. The second partition, /dev/sda2, was the one
on which the decoy operating system was installed; the whole partition was
encrypted. /dev/sda3 was the extended partition that hosts the /dev/sda5/
partition, which was the completely encrypted outer volume; the hidden OS
was installed within this partition. As the hidden OS was contained within the
encrypted hidden volume, which was located inside the encrypted outer volume,
plausible deniability necessitates that it should be impossible to prove the exis-
tence of this hidden OS. However, in the next section, we show that plausible
deniability of the VeraCrypt hidden OS is not met even in the simplest threat
model scenario.

3.1 Encrypted Drive Analysis

First, we investigated the possibility of defeating plausible deniability of a Ver-
aCrypt hidden OS under the most basic thread scenario, i.e. the One-Time
Access scenario. An example of such a scenario is when Alice’s computer is
seized by police, who force Alice to reveal the password of the encrypted par-
titions. Alice reveals the password for the decoy OS and for the outer volume.
According to the plausible deniability attribute of the VeraCrypt hidden OS, the
police should not be able to prove that Alice has a hidden OS installed on the
computer, as it is stored in an encrypted hidden volume inside the encrypted
outer volume.

A VeraCrypt hidden OS requires a special uncommon disk layout consisting
of at least two partitions that are both completely encrypted. This information,
in conjunction with the fact that VeraCrypt is installed on the computer under
investigation, can potentially raise the suspicion of the police to the presence of a
hidden OS. Nevertheless, this can reasonably be explained by Alice as the need to
separate the system and documents into separate partitions. However, any solid
indication that a hidden OS is installed on the computer under investigation is
sufficient to defeat plausible deniability.

We conducted randomness testing to check for artifacts in the outer vol-
ume. The reason for this is because if a hidden OS is running inside a com-
pletely encrypted hidden volume that is located within an outer volume, which
is also completely encrypted, no pseudo-random anomalies should be found.



8 M. Kedziora et al.

When we performed entropy analysis on the outer volume, it showed that most
of the examined data had values between 7.9978 and 7.9986, which represent
expected values from correctly encrypted cipher text data. However, we were
able to observe some unexpected values in specific sectors that were occupied
by the outer volume. In particular, there were two areas which clearly showed
significantly lower entropy values of 7.9966 and 7.997, as can be seen in the plot
provided in Fig. 3.

Fig. 3. Areas with significantly lower entropy inside the outer encrypted volume.

The first of these observed areas was located in sector number 61345696, and
the second was located 45928448 bytes later in sector number 61435400. Both
of these sectors are located within the /dev/sda5 partition, which was within
the completely encrypted outer volume. The hidden volume hosting the hidden
OS had a size of 42504191 sectors. This could infer that the lower entropy areas
indicate the beginning and end of the hidden volume hosting the hidden OS.
Presence of these areas violates the plausible deniability of the existence of a
VeraCrypt hidden OS.

Both areas are exactly 512 bytes in length and consist of “00” bytes and
strings, and the path to the “\windows\system32\winload.exe” file, refer to
Fig. 4. Cross drive analysis showed that the second area correlates to running
the hidden OS. Three bytes at offset 61435400 are altered every time the hidden
OS is started. This is highlighted in Fig. 4, the bytes 90 90 00 change to CD 1E
01 whenever the hidden OS is started. A VeraCrypt ciphertext block size is 16
bytes (128 bits), this indicates that this area is not overwritten by the VeraCrypt
encryption algorithm.

In summary, an investigator can easily find these areas in a One-Time Access
threat model scenario. The presence of these areas is correlated with the exis-
tence of a hidden OS, and thus violates the plausible deniability attribute of a
VeraCrypt hidden OS. Furthermore, if an investigator is able to compare this



Defeating Plausible Deniability of Hidden Operating Systems 9

Fig. 4. Lower entropy areas.

area with binary snapshots taken over an interval of time (i.e. in the case of a
Multiple Access model), this can provide strong evidence as to the running of a
hidden OS on the computer.

3.2 Cross Drive Analysis

In this section, we demonstrate a method of defeating plausible deniability of
a VeraCrypt hidden OS in the case of a Multiple Access threat model. This
scenario assumes that an investigator is in possession of multiple binary copies
of Alice’s computer hard drive that were taken over several time intervals during
which Alice was using either the decoy OS or the hidden OS. This method has
previously been used in DFSs for detecting the existence of TrueCrypt hidden
volumes on a drive under investigation [6]. Our research adopts this method for
detecting the presence of a VeraCrypt hidden OS.

First, we split the binary images of the investigated drives into 1000 MB
blocks. Then the SHA1 of each block was computed. This was done under the
assumption that this will help narrow down the analysis from a 50 GB image
to smaller parts of the drive where data actually changes, which was true in
the case of analyzing TrueCrypt hidden volumes [6]. It turns out that running a
VeraCrypt OS’s “on the fly” encryption (even when the OS is idle) writes large
amounts of data, which distributes changes over the whole system partition.
VeraCrypt statistics estimate that 17, 33, and 520 MBs of data written on an
encrypted volume correspond to 1 min, 2 min and 5 min intervals [11]. Analysis
of the cryptographic hash function values clearly showed that mismatched blocks
in the case of running the decoy OS are placed in the first half of the investigated
drive image. This is in contrast to running the hidden OS, which changes only the
second half of the drive image. We performed a detailed comparison of changes
in each corresponding data block, and a visual depiction of this is presented in



10 M. Kedziora et al.

Fig. 5. In Fig. 5, every rectangle represents a 1000 MB block of the binary image
from the investigated drive (except for the last block which is 200 MB in size).
The first block is on the upper left, while the last block is on the lower right. The
data that changed during the running of the decoy and hidden OSs are depicted
as the horizontal gray lines.

Fig. 5. A visual depiction of changes that were made to the volume while running the
decoy OS (left) and hidden OS (right).

The experiment started with the creation of the binary images of the inves-
tigated drive containing both the installed decoy and hidden OSs. Then, virtual
machines were cloned, switched on and immediately turned off for the decoy OS
and a second clone for the hidden OS. While running the decoy OS, only data
on the second portion changed. Whereas, running the hidden OS only resulted
in changes in the outer volume, located in the third partition. Analyzing the
first change sector offset (62351360) and the last sector (103601344) allows for
an estimation of the hidden OS partition size. In the case of the experiment, it
was estimated as 19.7 GB, which compares favorably with the actual hidden OS
partition size of 20.26 GB. It is assumed that a more accurate estimation can be
made if we didn’t just turn the OSs on and off, but allowed the OSs to operate
for some time.

In summary, this demonstrates that cross drive analysis can uncover evidence
that a hidden OS is running on an investigated drive based on analysis of changes
in the encrypted drive.



Defeating Plausible Deniability of Hidden Operating Systems 11

3.3 Other Attack Vectors

Hidden OS by design are intended to ensure plausible deniability, especially in
the case of a One-Time Access model. In the previous section, we demonstrated
that they are vulnerable to Multiple Access attacks. In this section, we discuss
attack vectors based on the Live Response Access scenario. This is based on
the situation where an investigator has live access to the running hidden OS
or to the network/cloud environment within which the hidden OS is operating.
Our purpose is to reveal any information that can lead to proving that either
a decoy or a hidden OS is running. Despite information provided in the Ver-
aCrypt documentation that asserts that neither the OS nor any application pro-
grams will know that all data is essentially written to and read from the hidden
volume [11], we discovered that even non-privilege level applications can reveal
some information that can be used to detect a hidden OS.

Right after logging into the hidden OS, a pop-up message informing the
user that “for security reasons, when a hidden operating system is run-
ning, local unencrypted file systems and non-hidden VeraCrypt volumes are
mounted as read-only”, which gives away the fact that the system is run-
ning a hidden OS. In addition, when configuration files located in the %APP-
DATA%\VeraCrypt\folder from both the decoy and hidden OSs are compared,
there is a configuration key named “HiddenSystemLeakProtNotifStatus” that is
initially set to “1”, while no such key exists in the decoy OS’s configuration file.
There is an option to disable the pop-up message, however, upon disabling this
message, the configuration key will change to “2”. This is simple proof that the
hidden OS is running. Moreover, when comparing the configurations files, there
are clear differences. The hidden OS’s configuration file has 58 lines, whereas by
default, the decoy OS’s configuration file only has 10. While this by itself cannot
be treated as hard evidence, it potentially leaks information.

Another indication that a hidden OS is running can be obtained from
mounted volume information that the user can retrieve from the VeraCrypt GUI.
By default, a decoy OS runs from an encrypted volume named “System parti-
tion” with type “System”, whereas a hidden OS runs from a volume mounted
with the name “Hidden system partition” with type “Hidden”. This is shown
in Fig. 6. Even a standard user account is able to obtain this information. If an
investigator has administrative rights, it is highly likely that additional informa-
tion can be obtained by analyzing processes and drives on the kernel.

Another class of attack is based on network/cloud environment informa-
tion leaks. Modern operating systems are enhanced by default in cloud based

Fig. 6. VeraCrypt GUI while running a hidden OS.



12 M. Kedziora et al.

mechanisms to make work easier for the user. An example of this is the Microsoft
account that involves signing into one account for all devices. This information
and the number of login attempts are recorded and stored on user account infor-
mation which can easily be accessed. In our tests we also checked the Apple ID,
which is used to log into Apple’s iCloud as well as Google’s single sign on account.

The use of both the decoy and hidden OSs is visible in the account logs and
this can be an easy way to prove that another OS is installed on the device
by simply observing that two OSs are registered and used concurrently on the
same device. Combining this information with forensic analysis indicating that
only one OS is present on the device and that the drive structure is capable
of running a DFS hidden OS, can be used to prove the existence of a hidden
OS. Similar attacks can be performed by comparing browser fingerprints. These
types of web tracking techniques are described in [1,5]. We conducted a series of
tests which confirm that this method can indeed be used to reveal the presence
of a hidden OS.

Information that can compromise the existence of a hidden OS can also be
obtained from monitoring device network traffic. An attacker can use both pas-
sive and active OS identification techniques. As with cloud based information
leaks, these techniques can easily reveal the existence of a hidden OS if the user
runs different OS types. Techniques for detecting hidden OSs can also include
forensic analysis of decoy OSs by indexing application versions and network ser-
vices and comparing these with intercepted network traffic. Any unusual traffic
from the same IP and MAC, but with applications and services not present in
the decoy OS can lead to the conclusion that a hidden OS must be installed on
the device.

4 Conclusion

This paper demonstrates that the implementation of the VeraCrypt hidden oper-
ating system has faults that can be exploited to compromise the plausible deni-
ability attribute of the hidden OS even if an attacker only possess one binary
copy of the drive. This paper also presents experiment results showing that the
VeraCrypt hidden OS is vulnerable to cross drive analysis. This is because even
if the OS is idle, it still performs large amounts of read/write operations that
distribute changes to the entire partition area. Simply turning the hidden OS
on and off generates enough changes in the binary image to estimate the size of
the hidden OS. In addition, we discuss other types of attacks based on the Live
Response Access model that can be used to reveal the existence of a hidden OS.
Current hidden OS implementations do not cater for the possibility of cloud and
network applications, which result in information leaks that can be exploited to
prove that a hidden OS is installed on a device.

Acknowledgment. This work was undertaken with financial support of a Thelx-
inoe grant in the context of the EMA2/S2 THELXINOE: Erasmus Euro-Oceanian
Smart City Network project, grant reference number: 545783-EM-1-2013-1-ES-ERA
MUNDUS-EMA22.



Defeating Plausible Deniability of Hidden Operating Systems 13

References

1. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The
web never forgets: persistent tracking mechanisms in the wild. In: Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2014, pp. 674–689. ACM, New York (2014)

2. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). doi:10.1007/BFb0052229

3. Czeskis, A., Hilaire, D.J.S., Koscher, K., Gribble, S.D., Kohno, T., Schneier, B.:
Defeating encrypted and deniable file systems: TrueCrypt v5.1a and the case of the
tattling OS and applications. In: Provos, N. (ed.) 3rd USENIX Workshop on Hot
Topics in Security, HotSec 2008, San Jose, CA, USA, 29 July 2008, Proceedings.
USENIX Association (2008)

4. Davies, A.: A security analysis of TrueCrypt: detecting hidden volumes and oper-
ating systems a security analysis of TrueCrypt. Detecting hidden volumes and
operating systems (2014)

5. Fifield, D., Egelman, S.: Fingerprinting web users through font metrics. In: Böhme,
R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 107–124. Springer, Heidel-
berg (2015). doi:10.1007/978-3-662-47854-7 7

6. Hargreaves, C., Chivers, H.: Detecting hidden encrypted volumes. In: Decker, B.,
Schaumüller-Bichl, I. (eds.) CMS 2010. LNCS, vol. 6109, pp. 233–244. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13241-4 21

7. Jozwiak, I., Kedziora, M., Melinska, A.: Theoretical and practical aspects of
encrypted containers detection - digital forensics approach. In: Zamojski, W.,
Kacprzyk, J., Mazurkiewicz, J., Sugier, J., Walkowiak, T. (eds.) Dependable Com-
puter Systems. AISC, vol. 97, pp. 75–85. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21393-9 6

8. Jozwiak, I., Kedziora, M., Melinska, A.: Methods for detecting and analyzing hid-
den FAT32 volumes created with the use of cryptographic tools. In: Zamojski,
W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) New Results
in Dependability and Computer Systems. AISC, vol. 224, pp. 237–244. Springer,
Heidelberg (2013). doi:10.1007/978-3-319-00945-2 21

9. Kedziora, M., Chow, Y.-W., Susilo, W.: Improved threat models for the security
of encrypted and deniable file systems. In: Kim, K., Joukov, N. (eds.) The 4th
iCatse International Conference on Mobile andWireless Technology, ICMWT 2017.
LNEE, vol. 425, pp. 223–230, Kuala Lumpur, Malaysia, 26–29 June 2017. Springer
(2017). doi:10.1007/978-981-10-5281-1 24

10. Loginova, N., Trofimenko, E., Zadereyko, O., Chanyshev, R.: Program-technical
aspects of encryption protection of users’ data. In: 2016 13th International Confer-
ence on Modern Problems of Radio Engineering, Telecommunications and Com-
puter Science (TCSET), pp. 443–445, February 2016

11. VeraCrypt. VeraCrypt Documentation. http://veracrypt.codeplex.com/
documentation

12. Waits, C., Akinyele, J., Nolan, R., Rogers, L.: Computer forensics: results of live
response inquiry vs. memory image analysis. Technical report CMU/SEI-2008-TN-
017, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA
(2008)

http://dx.doi.org/10.1007/BFb0052229
http://dx.doi.org/10.1007/978-3-662-47854-7_7
http://dx.doi.org/10.1007/978-3-642-13241-4_21
http://dx.doi.org/10.1007/978-3-642-21393-9_6
http://dx.doi.org/10.1007/978-3-642-21393-9_6
http://dx.doi.org/10.1007/978-3-319-00945-2_21
http://dx.doi.org/10.1007/978-981-10-5281-1_24
http://veracrypt.codeplex.com/documentation
http://veracrypt.codeplex.com/documentation

	Defeating Plausible Deniability of VeraCrypt Hidden Operating Systems
	1 Introduction
	2 Threat Model
	3 Defeating Deniability of Hidden Operating Systems
	3.1 Encrypted Drive Analysis
	3.2 Cross Drive Analysis
	3.3 Other Attack Vectors

	4 Conclusion
	References




